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Propagation of a soliton pattern through an optical fiber with weakly disordered dispersion is
considered. Solitons, perturbed by this disorder, radiate, and, as a consequence, decay. The average
radiation profile is found. The emergence of a long-range intra-channel interaction between the
solitons, mediated by the radiation, is reported. We show that soliton in a multi-soliton pattern
experience a random jitter: average force acting on a soliton is negligible and fluctuations of the
soliton velocity are Gaussian, with a typical fluctuation estimated by Dz2√µ, where D measures
the disorder strength, z is the distance passed by the soliton in the fiber and µ stands for the
information rate (number of solitons per unit length of the fiber). We also present results of direct
numerical simulation of the soliton decay and two-soliton interaction, confirming our theoretical
analysis. Relevance of the results to fiber optics communication technology is discussed.

Introduction

Life is not perfect and fibers are not ideal. Produc-
tion inability to achieve a 100% guaranteed control of the
fiber parameters in the process of fiber pulling and pre-
form manufacturing results in irregularities of the fiber
structure. The structural disorder is built in the fiber.
Effect of the disorder on the propagation and interac-
tion of pulses, accumulates with propagation, i.e. the
longer a pulse (pattern of pulses) travels along the fiber,
the stronger disorder affects it. Even a weak disorder
may cause an essential damage to the pulse (sequence of
pulses) integrity. A strong effect of weak disorder in fiber
dispersion coefficient on the shedding and interaction of
pulses, problem which is crucial for progress in modern
nonlinear fiber optics and related communication tech-
nology, is described in the paper.

In fiber optics communication pulse is used as a bit of
information. For an ideal fiber, working in the regime
of nonlinear transmission, a pulse of electric field is de-
scribed by a stationary solution (soliton) of self-focusing
Nonlinear Shrödinger equation (NLSE) with constant co-
efficients. Stationarity, in particular, means that soli-
ton propagates through the fiber with a constant speed.
(See the book [1] for detailed derivation of NLSE from
Maxwell equations in a very general fiber optics setup.)
The stationary soliton is a result of a fine balance be-
tween the fiber dispersion and nonlinearity [2–4].

A sequence of pulses launched into fiber forms a pat-
tern, which codes transmitted message. Ideally, a pat-
tern, carrying information, is a sequence of solitons, each
positioned in the center of a slot allocated for the infor-
mation bit. State “1” is assigned to a slot, if the soliton
is present there and the state of the slot is “0” if the
slot contains no soliton. The disorder, built in the fiber,
breaks the ideal picture. (See also [5, 6] for a sample of
other corrections to ideal NLSE important in fiber op-
tics communications.) In the present manuscript we de-
tail dynamics of single- and multi-soliton patterns in the
presence of weak disorder in dispersion coefficient. Some

preliminary results of the study, detailed and corrected
here, were briefly described before in [7].

A soliton, propagating through the disordered system,
shades radiation and, consequently, loses energy. How-
ever, in the case of weak disorder (weakness of disorder
is actually required for successful fiber performance) de-
struction of the soliton is slow, i.e. its adiabatic descrip-
tion is possible. This implies separation of dynamical
degrees of freedom into slow and fast modes. (See [8–10]
for the general description of adiabatic perturbation ap-
proach to partial differential equations and [11, 12] for
the application of the general method to various regular
perturbations about the soliton solution of 1d NLSE.)
The slow modes describe the soliton evolution and the
fast ones correspond to the radiation. The soliton keeps
its ideal shape (so that, at each instant, it is close to a sta-
tionary solution of the noiseless NLSE) with the soliton
parameters (position, width, phase and phase velocity)
evolving slowly. Waves shed by a soliton are moving away
from it. The average intensity of the radiation (at suffi-
ciently large t, t < z) is estimated as Dη4 ln(z/t). Here,
η is the soliton amplitude, D measures the intensity of
the disorder (which is assumed to be weak, D � 1), z
stands for the distance passed by the soliton, and t is
the retarded time, i.e. time counted from the moment
when soliton was at the given position, z. (All the quan-
tities are measured in the respective soliton units: the
time unit is the soliton width, and the length unit corre-
sponds to the distance passed by soliton during one turn
on 2π of the soliton phase.) The radiation front runs out
of the soliton (in t) with the velocity, which is O(1). The
foreruner of the front (which is the domain of |t| � z)
decays exponentially with t/z. One finds that at any,
however large z, the radiation in an immediate vicinity
of the soliton is much less intense than the soliton itself,
i.e. the soliton is always distinguishable from the radi-
ation. Since the soliton losses its energy into radiation,
its amplitude η decays with z. The degradation law is
deterministic in spite of the original setting stochastic-
ity. This is because the variation of η is determined by
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an integral over z, which is self-averaged quantity. The
soliton degradation law, valid at any z, is

η = (1 + 32Dz/15)−1/4
. (0.1)

(A quantitative definition of the noise intensity D is given
in the next section.) Notice, that the degradation of the
soliton amplitude in the presence of disorder in disper-
sion coefficient was previously considered in [13], where
estimations consistent with the analytic expression (0.1)
were derived. Eq. (0.1) shows that the soliton starts to
degrade essentially at z ∼ zdegr = 1/D.

Next, we examine interaction of solitons at 1 � z �
1/D (when the soliton amplitude decrease is negligible)
via the radiation shed under the action of disorder in
dispersion. We show that the interaction is extremely
long-range, due to the 1d nature of the system and also
reflectiveless feature of the radiation. At any given z all
solitons separated from the given one by |t| <∼ z act on
this soliton with a force,. We find that the force is zero
in average. Fluctuations of the force result in a Gaussian
jitter of the soliton position. We find that for the two
soliton case (i.e. for the pattern consisting of two solitons
only so that no other solitons are present anywhere in the
|t| <∼ z vicinity of the pair), fluctuations in their relative
position, δy, are estimated by

〈(δy)2〉 ≈ 0.37 [1 + cos(2α)] D2z3 , (0.2)

where α is the phase mismatch of the solitons. Angular
brackets in Eq. (0.2) (and below) mean averaging over
realizations of disorder (i.e. over different fibers). In the
general multi-soliton case fluctuations in the i-th soliton
position are described by

〈(δyi)2〉 ∼ ND2z3 , (0.3)

where N is the number of solitons in the same channel
(propagating on a given frequency, i.e. with a given group
velocity) in the |t| <∼ z vicinity of the pair. (To avoid a
confusion, note, that effects of multi-channel interaction
are not discussed here.) The interaction effect produces
a displacement of a soliton of order unity (which, there-
fore, becomes dangerous as the soliton leaves the slot
allocated for it and the information is lost) at z ∼ zint =
N−1/3D−2/3. The interaction length, zint is shorter than
the degradation one, zdegr, so that our approximation is
justified: solitons acquire significant shifts in their posi-
tions before any essential decrease of the soliton ampli-
tude (or, generally, essential distortion of its shape) is
observed.

The material in the paper is organized as follows. Gen-
eral fiber optics relations relevant to our analysis are pre-
sented in Section I. The single soliton results are detailed
in Section II of the manuscript. In Section III we analyze
peculiarities of the interaction of two solitons via the ra-
diation emitted. In Section IV we discuss a generalization
of the two-soliton interaction effects for the multi-soliton
case. In Section V we present results of the direct numer-
ical simulations for single-soliton and two-soliton cases.

Section VI contains Conclusions. Details of calculations
are given in Appendices.

I. BASIC RELATIONS

This Section is devoted to introduction into general
problem of optical signal nonlinear propagation through
an imperfect fiber. Basic equations governing propaga-
tion of a pulse through such a fiber are introduced in
Section I A. Section I B is devoted to discussing param-
eters of real fibers, used in optics communication tech-
nology. Section I C introduces the formalism of a signal
separation into localized modes (solitons) and delocal-
ized modes (radiation). The general consequences of the
weakness of disorder for the separation formalism are dis-
cussed in Section I D.

A. NLS with frozen disorder

Optical fibers are wave-guides based on the effect of
complete internal reflection. A typical fiber consists of
core with higher refractive index and of gliding with lower
refractive index. Diameter of the fiber core corresponds
to the first transverse mode at the carrier frequency of
the signal. Therefore, light pulses can be described in
terms of a single mode electro-magnetic field, propagat-
ing along the fiber. Then, the field can be treated as one-
dimensional. Imperfectness of the fiber (disorder, built
in the fiber) is mainly coming from variations in its di-
ameter and chemical composite. Since a signal decays,
amplifiers should be inserted in the fiber line, to main-
tain the signal’s amplitude. Below, we discuss equations,
averaged over the inter-amplifier distance, provided the
attenuation is compensated by amplification.

A universal description of the signal envelope in the
reference frame moving with the wave packet group ve-
locity is given by NLSE (see, e.g., [1])

−i∂zΨ = d(z)∂2
t Ψ + 2|Ψ|2Ψ , (1.1)

explaining dynamics of electro-magnetic wave packet,
with envelope Ψ(z, t). The packet propagates in z (which
is coordinate along the fiber), being subjected to disper-
sion in retarded time t (i.e. time counted from the mo-
ment when soliton passes through a given position, z) and
to the Kerr nonlinearity. Eq. (1.1) assumes that fluctu-
ations in the chromatic dispersion coefficient, d(z), char-
acterizing irregularity of the fiber, have a greater effect
on propagation of pulses than fluctuations of any other
coefficients there, say of the Kerr nonlinearity (which is,
therefore, constant, re-scaled to 2 in the above equation).
Eq. (1.1) is a result of the Maxwell equations averag-
ing which accounts for geometrical features of the fiber
core and gliding. Other averaging, also accounted for in
(1.1), is performed over the amplifier spacing. Real-world
problems in fiber-optics communication may require an
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account for corrections to Eq. (1.1), e.g. for subleading
corrections coming from averaging over amplifier spacing
[18]. We argue in Subsection I B that the extra terms pro-
duce only small, irrelevant corrections to the soliton in-
teraction discussed in the paper. Eq. (1.1) also accounts
for averaging over all the scales related to Polarization
Mode Dispersion (PMD), which is the major effect in
fiber optics communications associated with structural
disorder. (PMD is caused by variations of ellipticity of
the fiber, called birefringence.) Thus, in this manuscript
we do not consider PMD, assuming that optical pulse is
linearly polarized.

Only recently the chromatic dispersion profile, d(z),
became experimentally accessible. The high-precision
measurements [19, 20] demonstrated a significance of the
dispersion randomness. The chromatic dispersion in op-
tical fibers comes from two sources. The first source is the
medium itself. Material dispersion in modern fibers is a
relatively stable parameter, uniformly distributed along
the fiber. That is why we assume here, that the disper-
sion does not fluctuate in time. The second source is
due to specific geometry of the wave-guide profile. Exist-
ing technology does not provide accurate control of the
wave-guide geometry in fibers, so that the actual depen-
dence of the dispersion coefficient on the wavelength is
complicated. As a result, the typical magnitude, dvar , of
random variations of fiber chromatic dispersion d(z), can
achieve, or in some cases even become greater than, that
of the mean dispersion. A typical scale of the disorder
variations, zvar , is much less than all relevant scales in
the problem. (See, Section I B for discussion of real-world
numbers and estimations.)

It is convenient to separate constant part of d (which
we re-scale to unity) and its fluctuating part ξ: d = 1+ξ,
where ξ is a random function of z, correlated on the
scale zvar . We examine statistical properties of the fibers,
which represent averaging over many realizations of the
disorder ξ(z) (over many fibers). Those objects allow
to establish both typical fluctuations and probability of
large deviations from the typical value for different quan-
tities. Being interested in phenomena occurring on scales,
larger than zvar , one can treat the disorder ξ as a short-
correlated one. Then the first two cumulants of ξ are

〈ξ〉 = 0, 〈ξ(z1)ξ(z2)〉 = Dδ(z1 − z2) , (1.2)

where 〈. . . 〉 marks averaging over realizations of the dis-
order (over different fibers). The coefficient D (to be
called noise intensity) is estimated as D ∼ zvard

2
var .

High-order cumulants of ξ are negligible as containing
higher powers of zvar . In other words, statistics of ξ
is Gaussian. Also, the smallness of zvar (in comparison
with relevant z-scales) leads to the inequality D � 1,
which just means that the disorder is weak. The weak-
ness of disorder is, actually, a necessary condition for a
successful fiber performance.

Let us notice, that describing propagation of a signal,
we adopt mixed optical-quantum mechanical notations
and terminology. Indeed, the traditional optical nota-

tion, t, is reserved for retarded time, since, experimen-
tally, the electro-magnetic field envelope is measured as
a function of time, and also because t in Eq. (1.1) is a
descendant of the real time in the original Maxwell equa-
tions, the equation was derived from. From the other
side, the retarded time is proportional to real time mi-
nus position along the fiber z, over velocity of light, and,
therefore, t is also carrying certain spatial sense. Besides,
Eq. (1.1), called Nonlinear Schrödinger equation in direct
analogy with the famous Linear Shrödinger equation, is a
parabolic equation with second order derivative over time
t, and not over the coordinate along the fiber z. The anal-
ogy with quantum mechanics is extremely helpful and
will be used in later discussions and derivations. It ex-
plains why we treat t more like a spatial variable rather
than a temporal one, marking oscillations in t by “wave
vectors”, which would be natural to call “frequencies” in
a pure optical context. (To avoid a misunderstanding,
let us stress, that the frequencies have no relation to the
frequency of the original electromagnetic wave.)

Another remark is about relevance of the physics de-
scribed by Eq. (1.1) for the phenomenon of localization
of light in disordered medium [21]. As it was mentioned
above, the disorder term ξ originates from fluctuations
of the wave-guide dispersion, and not from the mate-
rial component of the dispersion. Fluctuations of the
material disorder was not accounted for in Eq. (1.1).
Nevertheless, we find it useful to briefly discuss here its
effect on propagation of light. The material disorder is
associated with irregularities of the fiber core and glid-
ing (impurities) on a very short, atomic scales. The light
scattering on the impurities leads to the well known phe-
nomenon of localization of light, taking place at the larger
scale, usually called localization length [21]. The local-
ization length is inversely proportional to the strength of
the material disorder. The material used for manufac-
turing modern fibers is usually very clean, so that the
localization length essentially exceeds the distance be-
tween filters, which, in the typical fiber lines, are placed
at the amplifier stations. Filters cut the back scattering
of light, and therefore, destroy coherence, required for
emergence of the localization phenomenon. As a result,
presence of a (very low intensity) material disorder does
not play any significant role in fiber optics communica-
tions. Notice, also, that the scale of the wave-guide disor-
der variations, zvar , essentially exceeds the wave-length
of light, that allows not to take into account the back-
scattering of light due to the wave-guide disorder. (The
later separation of scales allows to reduce the hyperbolic
Maxwell equations to the parabolic equation (1.1) in the
envelope approximation.) Therefore, no localization phe-
nomena due to this disorder is possible. For the sake of
generality, let us also note, that a role of the disorder in
the context of the localization-delocalization transition
was investigated for the non-linear Schrödinger equation
(see, e.g., [22]). However, in the solid state physics frozen
disorder means, that noise is z-independent (in our nota-
tions). The t-dependent noise is very different from the
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z-dependent one, studied here, and to the best of our
knowledge, the former case does not correspond to any
situation of interest in fiber optics communications.

B. Real-world transmission parameters

The equation (1.1) is written in the dimensionless
units, which are transformed from the real-world fiber
units according to the following rules. The envelope of
the electric field is in the form E = Re

[√
P0Ψeiω0t

]
,

where P0 is the peak pulse power and ω0 is the carry-
ing frequency of the signal. The propagation variable is
z = Z(αKP0/2), where Z is distance along the fiber and
αK is the Kerr nonlinearity coefficient. The Kerr coeffi-
cient can be expressed in terms of other fiber parameters,
αK = 2πn2/(λSeff ), where n2 is the nonlinear compo-
nent of fiber refractive index, λ is operating wavelength,
and Seff is an effective core area of the fiber. The other
coordinate is t = (T − Z/c)/τ0, where T is time, c is
the light velocity along the fiber (T − Z/c is just the re-
tarded time), and τ0 is the pulse width. The dispersion
coefficient is d = 2β2/(αP0τ

2
0 ), where β2 is the second

order dispersion parameter. We preset here the param-
eters’ set for a standard example of dispersion shifted
fiber: β2 = 0.1ps2/km, α = 2W−1km−1, λ = 1550nm,
τ0 = 7ps, P0 = 2mW.

The typical scale of the disorder variations, zvar , can
be extracted from experimental measurements [19, 20],
which show that zvar , is shorter than ∼ 1 − 2km. Reso-
lution of the experimental method is 1− 2 km, while one
expects that the typical scale of the variations is, actu-
ally, one to two orders of magnitude shorter, ∼ 10 − 100
m, i.e. it is fixed by the size of the production facility.
In any case, zvar appears to be essentially shorter than
the other relevant scales describing the long-haul trans-
mission. It was also reported in [19] that fluctuations
of the dispersion coefficient in a sample of the “disper-
sion shifted” fiber are of the order of its average value,
i.e. δβ2 ∼ 0.5ps2/km. Therefore, for the pulse width of
∼ 7ps (that corresponds to 28 Gb/s single-channel trans-
mission rate) and the nonlinear length, znl = (αP0)−1 ∼
250km, the noise intensity D = zvard

2
var is estimated by

10−3 − 10−2. Then, the soliton interaction is seen at
zint = 1/

√
D ∼ 2, 500 − 7, 500km. Notice, however, that

decrease of the pulse width by a factor q (correspondent
to the factor q increase of the transmission rate) leads to
the q2 decrease of zint .

Let us now discuss applicability criteria of the approx-
imations leading to Eq. (1.1) for the real world situation
in fiber-optics communication technology. An impor-
tant additional scale in optical communication systems
is imposed by fiber losses γ. Compensation of energy
losses require use of in-line optical amplifiers separated
by zamp ∼ γ−1. The value of zamp is usually 40 − 70km.
Soliton based optical communications is possible if dis-
persion length, zdisp = τ2

0 /β2, length of nonlinearity and
amplification spacing are related in the following way

zdisp ∼ znl � zamp. Oscillations of the pulse ampli-
tude due to fiber losses in this case can be eliminated
by averaging over zamp, resulted in Eq. (1.1). Thus,
respective corrections to Eq. (1.1) can be estimated as
(zamp/zdisp)2, as it is shown in [18]. For the above exam-
ple the parameter, (zamp/zdisp)2, is estimated as 10−2,
which can be of the same order of magnitude as noise
strength D. Therefore, exclusion of the correction term
from Eq. (1.1), as well as the validity of the averaging
procedure over ξ, both require an additional justification.
The correction term provides deterministic and stochas-
tic contribution to optical pulse. Deterministic contribu-
tion does not produce an additional continuous radiation
and provides only weak shape deformation of the opti-
cal soliton. The stochastic contribution is (zdisp/zamp)2
times smaller than the main stochastic contribution con-
sidered in the paper. Therefore, averaging over the am-
plifier spacing does not change the major characteristic
of the disorder D, and affects only the correlation length,
i.e. the averaging changes the original zvar to zamp . The
latter scale is still much smaller than all other relevant
scales, and, therefore, Eq. (1.1) does explain situation of
practical interest for fiber optics communications.

C. Separation into localized-delocalized modes

One assumes that at the origin (fiber entrance), z = 0,
the signal Ψ is close to N -soliton solution of the no-
disorder NLSE, i.e. of Eq. (1.1) with d = 1. The disorder
in the dispersion d, ξ, disturbs the ideal N -soliton pat-
tern. Our task here is to describe evolution of Ψ under
action of the disorder. The weakness of the disorder ξ
and the localized nature of the initial profile Ψ(0, t), sug-
gest the following decomposition

Ψ = Ψsol + Ψcon , (1.3)

where Ψsol is the localized (soliton) part of the envelope
and Ψcon stands for radiation (de-localized part). If there
is no disorder (ξ = 0) Ψsol is a solution of the ξ = 0
version of (1.1) and Ψcon = 0. Therefore, Ψcon is O(ξ).

In the single-soliton case we have

Ψsol =
η

cosh [η(t − y)]
exp [iϕ + iβ(t − y)] , (1.4)

where η, y, ϕ and β are amplitude, position, phase and
phase velocity of the soliton. The disorder ξ drives a
complicated z-dependence of the soliton parameters η, ϕ,
β and y, whereas in absence of the disorder (at ξ = 0) η
and β are z-independent, and y and ϕ are linear functions
of z. We represent the soliton phase ϕ(z) in the form

ϕ = α +
∫ z

0

dz′η2(z′) , (1.5)

where α is a new parameter (which is z-independent in
the absence of the disorder).
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It is convenient to pass from the radiation field, Ψcon ,
to a new field v, which differs from Ψcon by the single-
soliton phase factor,

v = exp [−iϕ − iβ(t − y)] Ψcon . (1.6)

The field v can be written as a decomposition(
v

v∗

)
=

∫ +∞

−∞

dk

2π
[akϕk(x) + a∗

kϕ̄k(x)] , (1.7)

which is an analog of expansion over plane waves in ho-
mogeneous case. Here ϕ, ϕ̄ are eigen-functions

L̂ηϕk = (k2 + η2)ϕk, L̂ηϕ̄k = −(k2 + η2)ϕ̄k, (1.8)

of the operator

L̂η ≡ (∂2
t − η2)σ̂3 +

2η2

cosh2[η(t − y)]
(2σ̂3 + iσ̂2) , (1.9)

describing evolution of linear perturbation about the sin-
gle soliton profile (1.4) of the no-disorder NLSE. They
can be written as ϕk = fk/η(x) and ϕ̄k = f̄k/η(x), where
x = η(t − y), and fk, f̄k are the eigen-functions of L̂η

at η = 1, defined in Appendix A. This complete system
of the eigen-functions was found by Kaup in [11]. The
coefficients ak and a∗

k in Eq. (1.8) are functions of z.
Besides, the eigen-functions ϕk and ϕ̄k depend on z via
η(z) and y(z), entering their definition. The functions
ϕk, ϕ̄k are orthogonal to the four localized modes, corre-
sponding to variations of the four soliton parameters in
(1.4) (see Appendix A), and the orthogonality conditions
can be written as∫ +∞

−∞
dt cosh−1(x)(v + v∗) = 0 ,

∫ +∞

−∞
dt tanh(x) cosh−1(x)(v − v∗) = 0 ,

∫ +∞

−∞
dt x cosh−1(x)(v + v∗) = 0 ,

∫ +∞

−∞
dt [x tanh(x) − 1] cosh−1(x)(v − v∗) = 0 . (1.10)

The relations (1.10) fix uniquely (even though inexplic-
itly) the soliton parameters, introduced by Eq. (1.4), for
a given function Ψ(z, t).

Substitution of Eqs. (1.3-1.6) into the noisy NLSE
(1.1) (where d has to be replaced by 1 + ξ) with subse-
quent expansion over ξ and v results in

iη∂zαf0(x) − ∂zηf3(x) + η2(∂zy − 2β)f1(x)

+iη∂zβf2(x) + ∂z

(
v

v∗

)
− iL̂η

(
v

v∗

)
+ . . .

= iξη3

[
1

cosh x
− 2

cosh3 x

](
1
−1

)
, (1.11)

where x = η(t − y). Dots in (1.11) stand for high-order
terms in v and β. Then, the equations for the soliton

parameters and the continuous spectrum amplitudes ak

can be found by projecting the equation (1.11) onto re-
spective eigen-functions of L̂η (1.9). Let us present here
an expansion of the right-hand side of (1.11) into a series
over the eigen-functions

i

[
1

cosh x
− 2

cosh3 x

](
1
−1

)

= η−1

∫
dk

2π
(bk/ηϕk + b∗k/ηϕ̄k) − if0(x) , (1.12)

bq =
πi

2
(q + i)2

cosh(πq/2)
. (1.13)

required for further calculations. To derive Eq. (1.12),
we use the relations (A11,A12) from Appendix A.

In the multi-soliton case a localized part of Ψ, Ψsol , can
be approximated as an N -soliton solution of no-disorder
NLSE with 4N parameters, varying in z. If individ-
ual solitons in the N -soliton pattern are well-separated
from each other (i.e. if inter-soliton separations are all
much larger than a single soliton width), Ψsol can be ap-
proximated (with an exponential accuracy over the inter-
soliton separations) by a sum of single-soliton contribu-
tions

Ψsol =
N∑

i=1

ηi

cosh [ηi(t − yi)]

× exp
[
iαi + i

∫ z

0

dz′ η2
i + iβi(t − yi)

]
, (1.14)

where ηi, yi, αi and βi are real parameters, standing
for amplitudes, positions, phases and phase velocities of
the solitons. Each soliton is labelled by its number i,
i = 1, · · · , N . Very much like in the single-soliton case,
the soliton parameters, driven by the z-dependent disor-
der ξ(z), depend on z. The 4N parameters of Ψsol are
determined for a given Ψ through 4N conditions gen-
eralizing the relations (1.10). The conditions manifest
orthogonality between the continuous spectrum and lo-
calized modes of differential operator defined for linear
perturbation of the no-disorder version of (1.1) about its
N -soliton solution.

We assume that a sequence of identical (of the same
unit amplitude and zero initial phase velocity) ideal soli-
tons are launched into the fiber at z = 0. Thus the initial
conditions for Ψ are

ηi(0) = 1, βi(0) = 0, Ψcon(0, t) = 0 . (1.15)

The initial positions of the solitons, yi(0), are parame-
ters coding the transmitted information. Solitons phases,
αi(0), have to be included in the initial set up, also.

D. Weakness of disorder

The separation (1.3) of the entire solution of Eq. (1.1)
into the localized and de-localized parts is natural in the
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case of weak disorder. The weakness of disorder (D � 1)
has two important consequences: first, the radiation shed
by soliton is also weak, i.e. Ψcon = O(ξ), and second, pa-
rameters of soliton vary slowly in z, while dynamics of
the radiation field Ψcon is relatively fast. The weakness
of the radiation intensity, |Ψcon | � 1, suggests linear
description for Ψcon . Let us, however, stress, that, gen-
erally, the decomposition (1.3), determined by Eqs. (1.4-
1.9) for a single soliton (and by analogous relations for
the multi-soliton case), does not require any smallness
of Ψcon . The generality of the approach will help us to
construct a consistent perturbation theory (which, as we
demonstrate below, requires an account for some higher
order terms).

An important part of our further analysis will be fo-
cused on derivation and solution of a linear (as the ra-
diation is weak) equation for Ψcon . The equation gets
a rather complex structure, which, generally, requires an
accurate, case specific, analysis. However, the asymp-
totic behavior of Ψcon , away from all the solitons, is sim-
ple and general, and it is certainly worth discussing it
here, already in the introductory part. Far from solitons
the radiation field Ψcon is described by the linear wave
equation

−i∂zΨcon = ∂2
t Ψcon . (1.16)

Thus, in the asymptotic domain the field, Ψcon , can be
expanded over the set of plain waves, ∝ exp(−ik2z+ikt).
We see, that at a given z the quantity k determines the
frequency of the envelop. However, since t is the retarded
time, then k has also a sense of the wave vector, the
name we adopt in subsequent analysis. In the reference
frame, moving with the light speed along the fiber, a wave
packet with the wave vector k propagates along the z-axis
with the group velocity 2k. Therefore, the group velocity
decays as the wavelength, k−1, increases. This means, in
particular, that short waves arrive first to remote points.

II. SHEDDING OF RADIATION BY A SINGLE
SOLITON

The symmetry of the single-soliton set up allows re-
duction in number of essential degrees of freedom. Since
both the equation (1.1) and the single-soliton version of
the initial condition (1.15) are invariant under time in-
version, t → −t, neither soliton position, y, nor its phase
velocity, β, are changing with z. The integral quantity
E =

∫
dt |Ψ|2 (which is also natural to call energy, since

it corresponds to the energy of original electromagnetic
field) is conserved. This conservation law is due to the
gauge symmetry of Eq. (1.1). The single-soliton version
of the conservation law is

2η +
∫

dt |v|2 = 2 . (2.1)

It gives an instantaneous (valid at any given z) relation
between soliton amplitude and integral over t of the radi-
ation intensity. The soliton phase, α, although changing

under the action of disorder, does not enter (2.1). Notice,
that the relation (2.1) is valid generally, regardless of the
relative strength of the two terms on the left-hand side
of Eq. (2.1).

The weakness of disorder (D � 1) is essential for the
next two steps, which are:
1) Linear approximation, reducing calculations to direct
account for the leading order in the radiation, ξ, terms in
the basic dynamical equation. We will show below that
the direct perturbation expansion is valid at z � 1/D,
where deviations of η from unity are small;
2) Quasi-Linear approximation, explaining generaliza-
tion of the pure linear approximation to the case of
moderate- (z ∼ 1/D) and long- (z � 1/D) haul trans-
missions. For such z a cumulative change of the soliton
amplitude, η, becomes essential, while the radiation shed
is still (like in the linear case) weak at any given position.

Equations for z-dependence of the parameters η, β, α,
y, ak and a∗

k are presented and discussed below separately
for the linear (z � 1/D) and quasi-linear (z >∼ 1/D)
cases. An essential part of the subsequent analysis (espe-
cially complicated in the quasi-nonlinear case) will be de-
voted to the proof of the following asymptotic statement:
the higher-order terms (dots in (1.11)) do not contribute
to the leading asymptotic description of the radiation
profile v at any t, z � 1. Notice, however, that some of
the higher-order terms have to be taken into account in
the asymptotic equations for the soliton parameters.

A. Linear approximation

The linear (first order in ξ) approximation is exam-
ined in the Subsection. Recalling that the parameters
α, β and η (and, also, y, if the soliton is not moving)
are z-independent in the no-disorder (ξ = 0) case, one
finds that z-derivatives of the slow variables are O(ξ) or
smaller. The radiation, v, is also O(ξ), that is small due
to the smallness of ξ. According to the conservation law
(2.1), η = 1 + O(v2), i.e. it can be simply replaced by
unity in the approximation. All the observations make it
really simple to linearize (1.11) with respect to ξ.

Once the linearized equation is found, one can derive
equations for the soliton parameters and the expansion
coefficients ak, introduced by Eq. (1.7), projecting the
equation to the respective eigen-functions of the operator
L̂ (see Appendix A). Projection to the eigen-functions of
the discrete spectrum gives the following equations for
the soliton parameters

∂zα = −ξ , ∂zη = 0 , ∂zβ = 0 , ∂zy = 2β , (2.2)

where we used the expansion (1.12). In agreement with
what was already discussed, Eq. (2.2) shows that nei-
ther y nor β depend on z. Below we put β = 0 in ac-
cordance with the initial conditions, and assume y = 0
(without any loss of generality). Eq. (2.2) confirms an
already mentioned observation that η does not get any
z-dependence in the first order in ξ. Then, the equation
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for the continuous spectrum coefficients of the radiation
expansion, ak, derived from Eqs. (1.11,1.12,1.13), is

∂zak − i(k2 + 1)ak = bkξ , (2.3)

where bk is defined in Eq. (1.13). The solution of Eq.
(2.3) is written as

ak(z) =
∫ z

0

dz′ξ(z′)bk exp
[
i(k2 + 1)(z − z′)

]
. (2.4)

Substituting Eq. (2.4) into Eq. (1.7) and considering the
radiation far away from the soliton (that implies t � 1)
one gets

v ≈ − i

4

∫ z

0

dz′ ξ(z′) exp [−i(z − z′)]J (t, z − z′) , (2.5)

J (t, s) =
∫

dq
(q − i)2

cosh[πq/2]
exp(−iqt − iq2s) .(2.6)

A stationary phase calculation of the integral on the
right-hand side of Eq. (2.6) gives

J (t, s)≈
√

π

is

(
t

2s
+i

)2

exp
(

i
t2

4s

)
cosh−1

(
πt

4s

)
. (2.7)

The asymptotic expression (2.7) is valid at s � 1.
To describe the space-time dependence of the radia-

tion, we examine the radiation intensity |v|2, averaged
over realizations of the disorder ξ, in the asymptotic do-
main of large z and t, z, t � 1. Multiplying two replicas
of (2.5) to each other, and averaging the result over dis-
order, in accordance with Eq. (1.2), one finds

〈|v|2〉= D

16

z∫
0

dz′ |J (t, z − z′)|2 . (2.8)

At t � 1 one can substitute J in Eq. (2.8) by its asymp-
totics (2.7).

Let us first consider relatively short t, t � z. For z′ in
(2.8), restricted by z−z′ � t, one gets |J |2 ≈ π/(z − z′),
resulting in the logarithmic divergence of the integral in
(2.8) at small values of z − z′. The divergence is cut at
z − z′ ∼ t, leading to the following radiation intensity
profile

t � z � 1/D, 〈|v|2〉 ≈ π

16
D ln

z

t
. (2.9)

In the domain of the radiation forerunner defined by,
t � z, cosh in Eq. (2.7) can be replaced by its exponen-
tial asymptotics. Then, the integral in (2.8) is formed in
the region of the shortest z′ allowed in the domain. Cal-
culating the integral explicitly, one derives the following
asymptotics for the radiation forerunner

z � 1/D, z � t, 〈|v|2〉 ≈ Dt3

32z3
exp

[
−πt

2z

]
. (2.10)

The two asymptotic expressions (2.9) and (2.10) match
at z ∼ t.

It is instructive to present a qualitative explanation for
the logarithmic profile (2.9). At small k the source of the
radiation (localized at the soliton) can be treated as a
point-like one. Therefore waves with the wave vectors
k < 1 are excited by the disorder with approximately
equal probability. Nevertheless, they have different group
velocities. Among all the waves shed by the soliton (at
t ∼ 1 and z′ < z) only those special with the wave vector
(group velocity) k ≥ t/z contribute to 〈|v(t)|2〉 at given z
and t. On the other hand, emission of the waves with k >
1 is supressed. Thus, the main contribution to 〈|v(t)|2〉 is
proportional to

∫ 1

t/z
dk/k = ln(z/t), where the 1/k factor

originates from the group velocity.
We conclude the Subsection establishing the region of

validity for the linear approximation explained above.
The first, and immediate, consequence of the linear ap-
proximation was the smallness of the soliton amplitude
change. It means that the amount of energy shed by
the soliton into radiation is negligible in comparison with
the energy still left in the soliton, Esol ≈ 2. According
to (2.9,2.10), the average energy shed into the radiation
is, Erad = 〈∫ dt |v|2〉. One finds, that the radiation en-
ergy is mainly stored in the region, separating the log-
arithmic and the exponential profiles, i.e. Erad ∼ Dz.
Since, according to (2.1), the overall energy is conserved,
one finds that the linear approximation is justified, i.e.
Esol � Erad , if z is essentially shorter than the degrada-
tion scale, zdegr = 1/D.

B. Quasi-Linear approximation.

Let us first draw a qualitative picture of what is hap-
pening at the scales larger than the degradation one,
z > zdegr . Once z exceeds zdegr = 1/D, the balance
of energy between the soliton and the radiation shifts to-
wards the radiation. However, the differential (per unit
z) release of energy into the radiation remains small and,
actually, continues to decrease with z. The radiation
emitted by soliton moves out of the soliton with a speed,
fixed by the instantaneous value of the soliton amplitude
η at the moment of emission, z. Once emitted the radi-
ation never returns back to the soliton, i.e. it does not
affect η later (at larger z). Therefore, if the density of
radiation was small at the relatively short z, z � 1/D,
(the fact proven in the previous Subsection) it cannot
increase at the larger z, quite opposite, it may only de-
crease, i.e. |v| � 1 at any t and z. This feature of the
linear approximation will be, therefore, carried over to
the larger z. The only new ingredient (not considered at
shorter z) is account for slow, but still a, degradation of
the soliton with z. Physically, the quasi-linear approx-
imation works because the waves shed by soliton leave
it fast, while soliton passes the distance δz ∼ 1/η2, and
the soliton amplitude η does not get any essential change
during δz (since D � 1).
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Our task here is, assuming some given dependence of η
on z, to study the radiation profile v. Then, one derives
from Eqs. (1.11,1.12,1.13)

∂zak − i(k2 + η2)ak = η2bk/ηξ . (2.11)

Some terms, originating from a z-dependence of η, were
omitted in Eq. (2.11). This step will be justified below.
The solution of Eq. (2.11) is

ak(z) =
∫ z

0

dz′ξ(z′)η2(z′)bk/η(z′)

× exp
[
ik2(z − z′) + i

∫ z

z′
dz′′η2(z′′)

]
. (2.12)

Substituting Eq. (2.12) into Eq. (1.7) and considering
the radiation away from the soliton (that implies ηt � 1)
one gets

v ≈ − i

4

∫ z

0

dz′ ξ(z′)η3(z′) exp
[
−i

∫ z

z′
dζ η2(ζ)

]
×J [

η(z′)t, η2(z′)(z − z′)
]

, (2.13)

where the function J is defined by Eq. (2.6).
Eq. (2.13) is fundamental for further calculation of

both the η dependence on z, and the average radiation
intensity profile dependence on t and z. (The following
two Subsections will be devoted specifically to the two
aforementioned subjects). However, it is very important
to justify beforehand the validity of those few but cru-
cial assumptions made in the course of the Eq. (2.13)
derivation from Eq. (1.11). The rest part of the present
Subsection is devoted to the task.

The key question here is: if some small terms in (1.12),
neglected in the course of derivation of (2.13), could be
accumulated at the largest z? The major result will be
negative answer to the question. To prove the general
validity of Eq. (2.13) one divides the entire t-domain into
two distinct regions, first, of some τ -wide soliton vicinity,
τ � 1/η, and the rest (remote region of t). The two
regions will be considered separately. First, the validity
of (2.13) should be proved for t from the box [−τ, τ ].
Then, on the second step, one should take into account
a term, omitted in the derivation of (2.13), originating
from a z-dependence (via η) of the eigen functions ϕk

and ϕ̄k, in Eq. (1.7).
The generalized version of Eq. (2.11), accounting for

the dangerous term, is

∂zak − i(k2 + η2)ak + Âak = η2bk/ηξ ,

where Â is a non-local over k and non-singular linear
operator, estimated by, Â ∼ ∂zη/η. Assuming that the
Â-correction is small, one arrives at the following modi-
fication of Eq. (2.13)

v ≈ − i

4

∫ z

0

dz′ ξ(z′)η3(z′) exp
[
−i

∫ z

z′
dz′′η2(z′′)

]

×
[
1 +

∫ z

z′
dz′′Â

]
J [

η(z′)t, η2(z′)(z − z′)
]

. (2.14)

For t, bounded by the τ -wide box, integration over z′
from the right-hand side of Eq. (2.13) is formed at z −
z′ ∼ τ/η. Therefore, correction to the integrand of Eq.
(2.13) due to the Â-term in (2.14) is estimated by

(z − z′)Â ∼ τ

η2
∂zη ∼ Dτη3 , (2.15)

where one substitutes the law (0.1), announced in Intro-
duction and derived in the next Subsection. The correc-
tion (2.15) is small provided τ � D−1η−3. The later in-
equality is obviously compatible with the only restriction
we have imposed so far on the size of the box, τ � η−1.

Next, we discuss the region of remote t, |t| > τ , where
the soliton part of the solution Ψ is negligible, while Ψcon

satisfies the linear wave equation (1.16). One can find
Ψcon outside the box by solving Eq. (1.16) with proper
boundary conditions, where Ψcon(±τ) was determined
on the previous step, and it is also assumed that the ra-
diation only escapes the τ -box but never re-enters. For-
tunately, the result of this procedure coincides with the
expression (2.13). Indeed, it is straightforward to check
that Ψcon related to v via the phase factor change (1.6),
satisfies the linear equation (1.16), if v is given by Eq.
(2.13). It is also seen from Eq. (2.7), that v contains
only waves leaving the τ -box. All this proves that there
are no essential corrections to Eq. (2.13) originating from
the domain of remote t either.

C. Degradation law for soliton amplitude.

The energy balance between the soliton and the radia-
tion controls the law of the soliton amplitude decay with
z. From the basic equation (1.1) one gets

∂z|Ψ|2 = id(z)∂t(Ψ∗∂tΨ − Ψ∂tΨ∗) . (2.16)

This equation describes dynamics of the energy density
|Ψ|2, and leads to the conservation law (2.1). Integrat-
ing Eq. (2.16) over the τ -wide box, introduced in the
previous subsection, one obtains a relation between the
amount of energy shed by soliton and the flux of energy
coming through the boundaries of the box. We choose τ
to be large enough, so that the t-integral of |Ψ|2 gets the
major contribution from the soliton itself, and is equal
to 2η. The integral of the right-hand side of Eq. (2.16)
is reduced to two boundary terms at t = ±τ . At the
boundaries one can replace Ψ by Ψcon and, also, replace
ξ by zero. The result is

∂zη(z) = i [v∗(z, τ)∂τv(z, τ) − v(z, τ)∂τv∗(z, τ)] .(2.17)

We show below, that the dependence of η on z can be
established from Eq. (2.17) with its right-hand side re-
placed by its average value (over the disorder statistics).
Performing this averaging, in accordance with Eq. (1.2),
one arrives at

∂zη =
Di

8

∫ z

0

dz′ η6(z′)I∗∂τI , (2.18)
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where I(z, t) = J [η(z′)τ, η2(z′)(z−z′)], and the function
J is defined by Eq. (2.6). In Eq. (2.18) the function
can be approximated by its asymptotic expression (2.7),
resulting in

∂zη = −πD

8

∫ z

0

dz′
τη4(z′)
(z − z′)2

(ζ2 + 1)2

cosh2(πζ/2)
,

where ζ = τ/[η(z′)(z − z′)]. The integral over z′ in the
expression is formed at z − z′ ∼ τ/η. The size of the
box τ can be chosen to be much smaller than ηz (if z �
1). Then, for relevant z′, z − z′ � z, and η(z′) can be
substituted by η(z). Passing from z′ to the integration
variable ζ and extending the integration region over ζ
down to 0 (this is possible since τ/z � 1) one gets

∂zη = −πD

8
η5

∫ ∞

0

dζ
(ζ2 + 1)2

cosh2(πζ/2)
= −8D

15
η5 . (2.19)

Integration of the differential equation (2.19) gives the
final result for the degradation law (0.1), announced in
the Introduction.

The law of the soliton decay given by Eq. (0.1) is
deterministic in spite of the randomness of the initial set
up, described by Eq. (1.1). The remarkable fact is due
to the self-averaged feature of η, and the rest part of
the paragraph is devoted to the proof of the statement.
Indeed, we demonstrate, that deviation of η (for a given
realization of the disorder ξ) from its average is small.

To establish statistical properties of η, we turn to the
auxiliary quantity

V(z) ≡ i [v∗(z, τ)∂τv(z, τ) − v(z, τ)∂τv∗(z, τ)] , (2.20)

standing on the right-hand side of Eq. (2.17). The irre-
ducible pair correlation function (cumulant) of V

K(z1, z2) = 〈V(z1)V(z2)〉 − 〈V(z1)〉 〈V(z2)〉 , (2.21)

is presented, according to (1.2,2.13), as a double integral
over z′1,2. One examines Eq. (2.21) at large values of z1 >
z2, ητ , z1,2, ητ � 1, and also assumes that the following
two inequalities, z1 − z2 � η−2τ and (z1 − z2)∂zη � 1,
are valid. Then, using Eq. (2.7), one finds

|K| < D2η5 τ5

(z1 − z2)2
, (2.22)

where the phase x2/4Ξ in Eq. (2.7) was dropped. (An
account for the phase would decrease the value of the
right-hand side in Eq. (2.22) and turn the inequality
into equality.) Integrating Eq. (2.22) over some z0-wide
vicinity of z = z1, one derives∫ z

z−z0

dz′ |K(z, z′)| < D2η9τ , (2.23)

where z0 � τ/η. Evaluating the inequality (2.23) fur-
ther, one gets〈[∫ z

z−z0

dz′ V(z′)
]2

〉〈∫ z

z−z0

dz′ V(z′)
〉−2

−1<
τ

ηz0
� 1 .

The integral, ∆η ≡ ∫ z

z−z0
dz′ V(z′), determines variations

of η(z′) for z′ from the interval bounded by z− z0 and z.
We established that fluctuations of ∆η are weak. On the
other hand, we are free to choose such z0 that ∆η � η.
To conclude, evolution of η can be described in terms of
the deterministic equation (2.19).

D. Average Radiation

This subsection is devoted to derivation of the average
radiation intensity profile from Eqs. (0.1,1.2,2.13). We
examine it in the asymptotic domain of large z and t,
z, t � 1. Averaging the radiation intensity |v|2 in accor-
dance with (1.2) one finds

〈|v|2〉= D

16

z∫
0

dz′η6
∣∣J [ηt, η2(z − z′)]

∣∣2 , (2.24)

where η = η(z′), and J is defined by Eq. (2.6).
The radiation profile at z � 1/D gets a more compli-

cated structure than in the domain of short z, z � 1/D,
studied above in the Section IIA. Using the asymptotic
expression (2.7) for the auxiliary function J and substi-
tuting Eq. (0.1) into Eq. (2.24) one derives

〈|v|2〉 =
15π

512

∫ z

0

dz′

(z − z′)[z′ + (15/32)D−1]

×
[

t2

4η2(z − z′)2
+ 1

]2

cosh−2

[
πt

4η(z − z′)

]
. (2.25)

Analysis of this expression shows that there are three
different asymptotic domains of t for any given z:

(a) t � [z3/D]1/4 & zD � 1,
(b) [z3/D]1/4 � t � z & zD � 1,
(c) t � z & zD � 1.

In the domain (a) two different asymptotic regions of z′,
1/D � z′ � z and t/η � z − z′ � z, give the major
contribution into the integral on the right-hand side of
Eq. (2.25). Collecting the major logarithmic terms, one
obtains

(a) 〈|v|2〉 =
15π

512z
ln

D3/4z7/4

t
. (2.26)

In the domain (b) the major contribution is coming from
the 1 � Dz′ � (z/t)4 region of z′ integration in (2.25),
leading to

(b) 〈|v|2〉 =
15π

128z
ln(z/t) . (2.27)

And, finally, at t � z the integral in (2.25) is formed at
Dz′ <∼ z/t, where cosh can be substituted by its expo-
nential asymptotics. This leads to

(c) 〈|v|2〉 =
15t3

256z4
exp

(
−πt

2z

)
. (2.28)
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Once all the asymptotics (for short z in the previous
Subsection, and for long z here) are presented let us de-
scribe a general picture of the radiation distribution. The
radiation front runs out of the soliton with the constant
speed, t/z ∼ 1. The logarithmic profile is formed behind
the front, while the radiation forerunner decays exponen-
tially with t/z � 1. Energy of the radiation is contained
mainly in the boundary region between the logarithmic
and the exponential profiles. At z � D−1, the logarith-
mic profile (2.9) is simple, and the pre-exponential factor
depends on D, as it seen from Eq. (2.10). At the larger
z, z � 1/D, when the soliton has already shed almost all
its energy into the radiation, the logarithmic profile splits
into two parts described by Eq. (2.26) and Eq. (2.27),
respectively, and the exponential asymptotics is modified
to Eq. (2.28). The regime (a) is formed by the waves with
k < η emitted continuously at different z′, whereas the
regimes (b) and (c) are formed by the “fast” waves, emit-
ted at z′ far from the observation point z. The boundary
between the regimes (a) and (b) is determined by the
condition t ∼ ηz (that is the “distance” passed by waves
with k ∼ η). The profile in the regime (a) knows about
the current size η of the soliton, whereas in the regimes
(b) and (c) the radiation is insensitive to the current
value of η. Note, that the universal profile, formed in the
regions (b) and (c), does not depend on the intensity of
the disorder, D, and the only information stored in the
asymptotics is about the initial soliton profile. The uni-
versal profile (b), (c) is self-similar: 〈|v2|〉 = z−1Φ(t/z).
From the first sight, the type of this self-similarity, t ∼ z,
contradicts to the asymptotic equation (1.16). The con-
fusion has a simple resolution. The main dependence of
v on t is associated with its phase, which, as it is seen
from Eq. (2.7), has normal kind of self-similarity z ∼ t2.
However, the phase drops from the absolute value |v|2, so
that the self-similarity of the later object is determined
by the subleading, ∼ 1/z, terms in the eiconal approx-
imation. Notice, that the phase (normal) self-similarity
will be seen in the, mediated by radiation, two soliton
interaction, we are switching our attention to in the next
Section.

III. INTERACTION OF TWO SOLITONS

Propagation of a two-soliton pattern at intermediate z,
1 � z � 1/D, is discussed in the current Section. As it
was shown in Section II, dynamics of a single pulse within
the range of scales bounded from above by the degrada-
tion scale, zdegr = 1/D, is trivial: y and β do not evolve,
while the change of the soliton amplitude η is O(zD),
i.e. negligible. The major observation following from our
analysis here is that the intersoliton separation, y2 − y1,
coupled to the phase velocities β1,2 of solitons in a two-
soliton pattern, does get a non-trivial dynamics at the
scales much shorter than the single soliton degradation
scale, zdegr. We show that the inter-soliton interaction
mediated by disorder is essential at the shorter scales

∼ zint , that is 1 � zint � zdegr. The soliton parameters
β1,2 are O(Ψ2

con), while Ψcon itself is O(ξ). Therefore,
we divide our analysis into the following steps. First, the
radiation Ψcon will be related to ξ in the linear approx-
imation. Second, β1,2, and then y1,2, will be presented
as a second order form in Ψcon. Finally, we will calcu-
late statistics of the forces acting on the solitons and,
therefore, will explain jitter the solitons experience.

A. Radiation generated by two solitons.

We consider the N = 2 case of the general setting
(1.3,1.14) with the two well-separated solitons, y = y2 −
y1 � 1 (y2 > y1 is assumed). At z � D−1 one can
substitute η1 = η2 = 1, and the localized part of Ψ (1.14)
is reduced to

Ψsol =
eiα1+iz+iβ1(t−y1)

cosh(t − y1)
+

eiα2+iz+iβ2(t−y2)

cosh(t − y2)
. (3.1)

The delocalized part, Ψcon , of the complete solution (1.3)
of Eq. (1.1) is built according to the general scheme
outlined in Section I.

Similarly to Eq. (1.6), one introduces an auxiliary ra-
diation field, v, v = Ψcon exp(−iα1 − iz), accounting for
the phase shift of the soliton, positioned at y1. The field
v can be written in the form of the expansion (1.7) over
the continuous spectrum eigen functions of an auxiliary
perturbation problem. The auxiliary problem is fixed by
the operator L̂, which is a two-soliton generalization of
the single-soliton operator (1.9). With the exponential
accuracy over the separation y = y2 − y1, the differen-
tial operator L̂ is L̂ = L̂(t − y1) at t < (y1 + y2)/2 and
L̂ = L̂α(t − y2) at t > (y1 + y2)/2. Here α = α2 − α1 is
the phase mismatch, L̂ and L̂α are defined in Appendix
A by Eqs. (A3,A13). We adopt the same general nota-
tions, ϕk, ϕ̄k for the continuous spectrum eigen-functions
of L̂, i.e. L̂ϕk = (k2 + 1)ϕk, L̂ϕ̄k = −(k2 + 1)ϕ̄k. The
eigen-functions are fixed by their asymptotic behavior at
large negative t:

t → −∞ ϕk →
(

k − i

k + i

)2

exp(ikt − iky1)
(

0
1

)
. (3.2)

Then, with the exponential accuracy, ϕk = fk(t − y1) if
t < y2 and

ϕk(t) =
(k + i)2

(k − i)2
exp(iky + iα)fα,k(t − y2)

if t > y1. Here y = y2 − y1 and the functions fk, fα,k are
defined by the expressions (A6,A7,A14). In the transient
region 1 � t− y1, y2 − t � 1, the two asymptotics of ϕk,
presented above, coincide. One should also add, ϕ̄k =
σ̂1ϕ

∗
k, to the set of eigen-functions to make it complete.

The orthogonality properties of ϕk, ϕ̄k are identical to
the ones given by Eqs. (A11).
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The linear equation for v follows from the direct ex-
pansion of the basic equation (1.1),

∂z

(
v

v∗

)
− iL̂

(
v

v∗

)
+ · · · = gξ (3.3)

g = i

[
2

cosh3(t − y1)
− 1

cosh(t − y1)

](
1
−1

)

+i

[
2

cosh3(t − y2)
− 1

cosh(t − y2)

](
eiα

−e−iα

)
.(3.4)

Here dots stand for terms corresponding to the localized
modes, and L̂ was introduced above. Substituting the
decomposition (1.7) into Eq. (3.3) and expanding its
right-hand side over the eigen-functions of the operator
L̂, one gets

∂zak − i(k2 + 1)ak = Bkξ , (3.5)

Bk = bk

[
1 +

(k − i)2

(k + i)2
e−iky−iα

]
, (3.6)

where bk are defined by Eq. (1.13). (In the derivation
we did not account for z-dependence of ϕk, since ∂zϕk =
O(ξ)). A solution of the Eq. (3.5) is

ak(z) =
∫ z

0

dz′ ξ(z′) exp
[
i(k2 + 1)(z − z′)

]
Bk , (3.7)

analogously to Eq. (2.4).
In the linear approximation over ξ, the solitons pa-

rameters can be examined in the framework of the same
Eqs. (3.3,3.4). The resulting equations for the soliton
parameters are

∂zα1,2 = −ξ, ∂zβ1,2 = 0, ∂zy1,2 = 2β1,2 , (3.8)

similarly to Eq. (2.2). Note, that according to Eqs. (3.8)
∂z(α2 − α1) = 0, i.e. the phase mismatch α = α2 − α1 is
independent of z in the approximation.

B. Evolution of soliton parameters

As follows from Eqs. (3.8), the soliton parameters y1,2

and β1,2 do not get any z-dependence in the first order
in v. One expects that in the next, second order, the β-
equations gets a nonzero contribution, i.e. ∂zβ1,2 ∼ |v|2.
Then, according to the y-equations (the last ones in Eq.
(3.8)) fluctuations of the separation y = y2 − y1 are es-
timated by z2|v|2, and are not small in the interesting
range of scales, z ∼ zint � zdegr. The estimations also
show that higher order, O(v3), corrections to the equa-
tions for β1,2 are not essential. Further, it is easy to check
that the equations for β contain the phases α1,2 only in
the combination, α = α2 − α1. According to the first
equation in (3.8), α does not evolve in the first order in
ξ, while account for the next (second) order correction to
the equation for α is inessential in the considered range of

z, z � 1/D. To conclude, the only thing left to be stud-
ied is the second order in v contributions to the equations
for β1,2.

To find the contribution, one expands the basic equa-
tion (1.1) up to the second order in v

∂z

(
Ψ
Ψ∗

)
= · · · + iξ∂2

t

(
Ψcon

−Ψ∗
con

)

+2i

(
2|Ψcon |2 Ψ2

con

−(Ψ∗
con)2 −2|Ψcon |2

)(
Ψsol

Ψ∗
sol

)
, (3.9)

where dots stand for the first-order terms. Extracting
terms, proportional to ∂zβ1, ∂zy1 from the left-hand side
of Eq. (3.9) and making the respective projections one
arrives at

∂zβ1 = F(z) = Fvv(z) + Fξv(z) + Fξα(z) , (3.10)

Fvv =
∫

dx
tanhx

cosh2 x

[
4|v|2 + v2 + (v∗)2

]
, (3.11)

Fξv = ξRe
∫

dx
tanhx

cosh x
∂2

xv , (3.12)

Fξα = −∂zα1Re
∫

dx
tanhx

cosh x
v , (3.13)

∂zy1 = 2β1 + P1, (3.14)

P1 = i

∫
dxx

cosh2 x

[
v2 − (v∗)2

]
, (3.15)

where x = t − y1. For completeness, we calculated the
second-order term in the equation for y1, which in Eq.
(3.14) is added to the first-order one. Expressions for
the soliton positioned at t = y2, can be obtained in a
similar way. Using mechanical analogy, one can call β
momentum of the soliton. Then F is the force, acting on
the soliton, and P1 is an additional impulse.

One is interested to describe fluctuations (statistics)
of y1 as a function of z, assuming that the inter-soliton
separation, y = y2 − y1 is much larger than unity, but
much less than z. Integrating the equations (3.10,3.14),
we obtain

δy1 =
∫ z

0

dz′(2β1 + P1), β1 =
∫ z

0

dz′F(z2). (3.16)

According to the Central Limit Theorem [23], β1,2 and
y1,2, as z-integrals of random functions, are Gaussian
random processes at large z. This Gaussianity allows
to estimate fluctuations of various quantities (about re-
spective average values) for particular realization of the
disorder, say, |δy1| fluctuates about 〈(δy1)2〉1/2 with the
same amplitude 〈(δy1)2〉1/2.

The main contribution to δy1 is related to the force
F . As it is shown in Appendix B, the average value
of F is negligible (more accurately it is exponentially
small in y, ∼ exp(−y) and vanishes algebraically with
z → ∞). The cancellation (lack of a ∼ D contribution
into the average value of the force F) is a consequence of
the reflectiveless feature of the solitons radiation. Thus
fluctuations of β1 are controlled by the pair correlation
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function of F , calculated in detail in Appendix B. The
main contribution to the correlation function is

〈F(z)F(z′)〉 = D2Gδ(z − z′) , (3.17)

where G is given by Eq. (B27), G ≈ 0.14. One, therefore,
obtains from Eqs. (3.16,3.17)

〈β2
1(z)〉 = D2Gz, 〈(δy1)2〉 =

4
3
GD2z3. (3.18)

Thus the typical change of the soliton position (counted
from its initial value at z = 0) is estimated as δy1 ∼
Dz3/2. The soliton leaves the allocated slot (in the
soliton pattern), i.e. δy becomes O(1), at z ∼ zint,
zint = D−2/3 � 1/D � 1. This happens well before soli-
ton amplitude acquires any significant reduction, there-
fore justifying our approximation.

Note, that the average of the impulse, 2
∫

dz F + P1,
is equal to 2D/3 (see Appendix B). That implies a sys-
tematic drift 2Dz/3 in y1. This drift is negligible in com-
parison with the fluctuating part of y1, δy1 ∼ Dz3/2, at
z � 1.

It is of interest also to examine the relative motion
of the solitons. Then one should take into account that
the forces, acting on the solitons, actually interfere. The
cross correlation term of the forces is dependent on the
solitons phase mismatch α. It results in the following
expression for the fluctuations of the relative position y =
y2 − y1 (see Appendix B for details of the derivation)

〈(δy)2〉 =
8[1 + cos(2α)]

3
D2Gz3. (3.19)

Substituting here the approximate value G ≈ 0.14, one
arrives at Eq. (0.2) from the Introduction. Eq. (3.19)
shows that fluctuations of the solitons separation are sen-
sitive to the phase mismatch (e.g. the fluctuations are
strongly suppressed at α = π/2).

IV. MULTISOLITON CASE

Let us discuss the effect of soliton interaction in a
multi-soliton pattern. The reflectiveless feature of the
radiation guarantees lack of the radiation screening. In
other words, all solitons positioned on distances <∼ z from
a given soliton are affected by the radiation shed by the
given soliton. Therefore, the radiation v in a vicinity of
a given soliton is given by a superposition of a single-
soliton radiative contributions, which differ by shifted
phases only from the two-soliton case. Each of the con-
tributions is only weekly dependent on the inter-soliton
separation, provided the separation between the solitons
is less than z (then the analysis similar to one produced in
the Appendix B is correct). To conclude, force acting on
a single soliton should grow with N , which is the number
of solitons affecting the given soliton by their radiation.

To obtain quantitative conclusions, one extends the
analysis of Appendix B to the multi-soliton case. Average

force, applied to a soliton vanishes (at large z and if the
exponential in y corrections, ∼ exp(−y), are not taken
into account). Fluctuations of yi, βi are Gaussian again
(due to the Central Limit Theorem). One finds that the
pair correlation function of the force acting on a given
soliton (and also the pair correlation function of the given
soliton position shift) is ∝ N . Notice also, that like in
the two-soliton case, force acting on the soliton, and thus
change in the soliton position, is sensitive to the relative
phases of all the N -solitons. However, unlike in the two-
soliton case, it is impossible to suppress fluctuations of all
the inter-soliton separations adjusting the soliton phases.

One concludes, that in the multi-soliton case Eqs.
(3.18) for the velocity and the soliton position change
acquiring an extra factor N . If the information rate in a
fiber is fixed, N grows linearly with z, i.e. δy is estimated
by ∼ √

µDz2, where µ is the number of solitons per unit
length of the fiber.

V. DIRECT NUMERICAL SIMULATION

We discuss here Direct Numerical Simulations of the
one- and two- soliton patterns. The major numerical
problem here is due to long haul (large z) nature of the
transmission. The radiation moves away from the soli-
ton pattern and eventually hits the boundaries of the
computational domain, which, in reality, cannot be in-
finite. Therefore, it is extremely important to design a
method by which the radiation does not retracts from
the boundaries, but instead evolves like it does not feel
the artificial boundaries. The problem of numerically ab-
sorbing boundary conditions design is one of the typical
computational problems in the wave-type equations, and
numerous efforts have been made to overcome these nu-
merical artifacts [25–27]. A common approach, widely
used to overcome the numerical problem, is to apply an
artificial damping at the vicinity of edges to suppress the
radiation in the far region. However, during the evo-
lution of the soliton, the transmission and reflection of
waves takes place simultaneously. In other words, damp-
ing, inevitably creates a parasite back refraction of waves.

We solve the problem in other way. Namely, we intro-
duce boundary conditions so that reflectionless feature
of the artificial boundaries is controlled analytically. The
only, but crucial, assumptions of the approach is that the
intensity of the signal at the boundaries of the compu-
tational domain is low enough, so that one can linearize
the basic Eq. (1.1) there. Let us consider regions |t| � 1
where one should observe the radiation going away from
the solitons. In the region one can use the equation

(i∂z + ∂2
t )Ψ = 0 , (5.1)

which is just the linear Schrödinger equation (without
potential). The radiative boundary conditions, imposed
on a solution of the equation (5.1) at the boundaries of
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the computational domain, t = ±T , can be written as

−i∂tΨ(z, T ) =
√

i∂z Ψ(z, T ) ,

−i∂tΨ(z,−T ) = −
√

i∂z Ψ(z,−T ) , (5.2)

where
√

i∂z is a non-local (integral) operator:

√
i∂z Ψ ≡

√
i

π

∫ z dz1√
z − z1

∂zΨ(z1) .

(The condition, T � 1, should also be satisfied.) No-
tice, that similar scheme for transient linear Schrödinger
equation with a potential bounded in a finite domain was
suggested in [27]. Furthermore, for the one-dimensional
NLSE, the transparent boundary conditions have been
discussed and introduced in several articles from various
application fields (see e.g. [28, 29]).

Implementing this transparent boundary condition to
a symplectic scheme for NLSE, we examined, first, degra-
dation of single soliton, and then, interaction of two
solitons caused by fluctuations of the dispersion coeffi-
cients. We use a standard random number generator
to produce Gaussian zero-mean random process corre-
lated at zvar with amplitude dvar . Choosing small zvar

(zvar is 0.05 in our numerical experiments) we guarantee
that the numerical random process approximates well the
zero mean δ-correlated uniform noise for ξ described by
〈ξ(z1)ξ(z2)〉 = Dδ(z1 − z2), with D = d2

varzvar .
The results of the numerical simulations can be plot-

ted in graphs. Fig. 1 shows dependence of the soliton
amplitude on z, with the strength of disorder D equal
to 0.0225. (D is chosen to be a small number to allow
a quantitative comparison with the asymptotic theory,
valid at D � 1.) Solid and dashed curves represent the-
ory, resulted in Eq. (0.1), and DNS for a representative
realization of the disorder, respectively. A good quan-
titative agreement between the theory and numerics is
reported within an extremely long range of z.

We also perform direct numerical simulations of the
two-soliton interaction. Notice that the two-soliton case
requires using more accurate numerical definition of
the soliton position at any given z. Since the soliton
amplitude only weakly deviates from unity, the posi-
tion of a soliton was found simply by minimization of∑

i[|Ψ(ti, z)| − 1/ cosh(ti − y)]2, where i numbers the
temporal grid points in a vicinity of a special point
where |Ψ(ti, z)| reaches its maximum. Fig. 2 shows de-
pendence of the dispersion in the inter-soliton separa-
tion fluctuations, 〈(δy)2〉, on z at the phase mismatches
α = 0, π/4, π/2. Our averaging (for each α) is done over
15 realizations. Numerical curves are solid, dashed curves
correspond to theoretical predictions of Eq. (0.2). The
strength of the disorder is chosen to be much smaller here
than in the DNS for the single soliton decay, D = 0.01252,
in purpose. We aimed to separate rdegr = 1/D and the
interaction scale, rint ∼ D−2/3, as much as we can to
be able to study the inter-soliton dynamics of the soli-
tons with yet bare (non-perturbed) shape (η = 1) at
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FIG. 1: Dependence of the soliton amplitude on z, position
along the fiber, for disorder of the strength D = 0.0225. Solid
and dashed curves represent theory, resulted in Eq. (0.1), and
DNS for a representative realization of the disorder, respec-
tively.
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FIG. 2: The dependence of the dispersion of the inter-soliton
separation fluctuation, 〈(δy)2〉, on z, position along the fiber.
The strength of disorder is D = 0.01252. Three different
set of curves for the three different values of the inter-soliton
phase mismatch, α = 0, π/4, π/2, are shown. Dashed curves
represent analytical result given by Eq. (0.2). Solid curves
represent results of DNS, each averaged over 15 different re-
alizations of disorder.

z ∼ zint . The initial separation y(0) was chosen to be
large enough (y(0) = 20 for the data shown on Fig. 2) to
avoid interference of the effects driven by disorder in dis-
persion coefficient with the direct interaction of solitons
(the direct effect decays exponentially with the separa-
tion y [30, 31]). The Figure shows a good agreement
between theory and numerics. To illustrate realization-
dependence of δy we show it in Fig. 3 as a function of
z for the 15 realizations at α = 0. For comparison, the
mean-square displacement is also shown in the Figure.
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FIG. 3: Dependence of δy on z for 15 realizations is shown.
The bold curves correspond to ±√〈(δy)2〉 where average is
taken over the realizations.

VI. CONCLUSION AND DISCUSSION

Let us recall different stages and scales in evolution of
soliton patterns, which appear due to weakness of disor-
der, D � 1. The distance passed by soliton during one
full turnover of its phase is unity in our notations. Soli-
ton starts to degrade, i.e. its amplitude change becomes
of the order of the initial value, at zdegr = 1/D. How-
ever, an interesting physics is also taking place at much
shorter z. The inter-soliton interaction caused by radia-
tion leads to an essential shift of the solitons at z ∼ zint,
zint = N−1/3D−2/3, where N is the number of solitons
in the channel.

The major effect reported in the paper is the emergence
of the separation-independent, fluctuating in z interac-
tion between solitons, mediated by their mutual radia-
tion. A frozen (t-independent), disorder (which produces
a multiplicative noise in the NLSE) stimulates the shed-
ding of radiation by solitons, which, in turn, mediates
the inter-soliton interaction. The interaction causes the
soliton to jitter randomly. The soliton displacement δy
is zero mean Gaussian random variable, with the typical
value estimated by δy ∼ Dz3/2N1/2. If N does not grow
with z (e.g. there are only finite number of solitons prop-
agating in the channel) the z-dependence of the jitter is
the same as the one given by the Elgin-Gordon-Haus jit-
ter [32–35] developed under the action of random additive
noise (short-correlated both in t and z noise of amplifiers
in the fiber system). However, if the flow of informa-
tion is continuous, i.e. if the front of radiation shed by
the given soliton sweeps more and more solitons with z
increase, N ∝ z, the efficiency of the interaction grows
with z in a faster, δy ∝ z2, pace, thus overscreening the
Elgin-Gordon-Haus jitter in the long-haul transmission.

The algebraic in separation, i.e. long range, char-
acter of the inter-soliton interaction discussed in the
manuscript is related to the reflectiveless feature of the
radiation scattering on soliton(s). Notice, however, that
the scattering becomes reflective in some nonintegrable

generalizations of the NLS equation that are of physical
importance, e.g. if random birefringence of fiber (Polar-
ization Mode Dispersion) is taken into account [36]. The
reflectivity leads to essential changes in the properties of
the radiation and the inter-soliton interaction, e.g. force
exerted on a soliton acquires nonzero mean.
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APPENDIX A: KAUP PERTURBATION
TECHNIQUE

Recall some, known after the works [11, 12], properties
of the perturbations near an ideal soliton described by the
nonlinear Schrödinger equation

−i∂zΨ = ∂2
t Ψ + 2|Ψ|2Ψ . (A1)

Substituting the expression

Ψ =
[
cosh−1(t) + v

]
exp(iz + iα) ,

into Eq. (A1) and expanding the result over v one finds

i∂z

(
v

v∗

)
+ L̂

(
v

v∗

)
= 0 (A2)

where the operator L̂ is

L̂ =
(
∂2

t − 1
)
σ̂3 +

2
cosh2[t]

(2 σ̂3 + i σ̂2) , (A3)

and the standard notations for the Pauli matrixes, σ̂1,2,3,
are used. L̂ satisfies the following set of relations

σ̂1L̂σ̂1 = −L̂∗ , L̂+ = σ̂3L̂σ̂3 . (A4)

Eigen set of the operator L̂ solves

L̂ f = λ f, (A5)

where f is an eigen-function correspondent to the eigen-
value λ. A general solution of (A5) is

fk = exp[i k t]
{

1 − 2 i k exp(−t)
(k + i)2 cosh(t)

}(
0
1

)

+
exp(i k t)

(k + i)2 cosh2(t)

(
1
1

)
, λk = k2 + 1 , (A6)
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where k runs from −∞ to +∞. According to Eq. (A4),
f̄k ≡ σ̂1 f∗

k are other eigen functions of L̂

f̄k = exp(−i k t)
{

1 +
2 i k exp(−t)

(k − i)2 cosh[t]

}(
1
0

)

+
exp(−i k t)

(k − i)2 cosh2(t)

(
1
1

)
, λk = −(k2 + 1). (A7)

The eigen set of L̂ also contains the following marginally
stable modes:

f0 =
1

cosh(t)

(
1
−1

)
, f1 =

(
1
1

)
tanh(t)
cosh(t)

, (A8)

where λ0 = λ1 = 0. The existence of double poles at
k = ±i means that two more functions must be added to
the eigen-set for completeness

f2 =
t

cosh(t)

(
1
−1

)
, L̂ f2 = −2f1 ; (A9)

f3 =
t tanh(t) − 1

cosh(t)

(
1
1

)
, L̂ f3 = −2f0 . (A10)

Next, f+
k σ̂3 and f̄+

k σ̂3 are the left eigen-functions of L̂,
which satisfy

+∞∫
−∞

dt f̄+
k σ̂3f̄q =−

+∞∫
−∞

dt f+
k σ̂3fq =2πδ(k−q) , (A11)

+∞∫
−∞

dt f+
2 σ̂3f1 = 2 ,

+∞∫
−∞

dt f+
0 σ̂3f3 = −2 . (A12)

Let us now modify the definition of v:

Ψ =
[
eiα cosh−1(t) + v

]
exp(iz) .

Then, the operator describing the linearized dynamics of
v is

L̂α =
(
∂2

t −1
)
σ̂3+

2
cosh2 t

[
2σ̂3+

(
0 e2iα

−e−2iα 0

)]
.(A13)

The operator L̂α satisfies the same identities (A4) as L̂
does. The eigen functions of the operator (A13) can be
obtained from Eqs. (A6,A7) by an obvious phase shift.
One gets

fα,k(t) = exp(i k t)
{

1 − 2 i k exp(−t)
(k + i)2 cosh(t)

}(
0

e−iα

)

+
exp(i k t)

(k + i)2 cosh2(t)

(
eiα

e−iα

)
,

f̄α,k(t) = exp(−i k t)
{

1 +
2 i k exp(−t)

(k − i)2 cosh(t)

}(
eiα

0

)

+
exp(−i k t)

(k − i)2 cosh2(t)

(
eiα

e−iα

)
.(A14)

The eigen-functions (A14) possess the same orthogonal-
ity properties (A11) as fk, f̄k do.

APPENDIX B: INTERACTION OF TWO
SOLITONS

Here we examine statistics of the force written in the
right-hand side of the equation (3.10).

One starts from analyzing Fvv given by Eq. (3.11).
Substituting ϕk and ϕ̄k into Eqs. (1.7) one derives

v2 + (v∗)2 + 4|v|2 =
∫

dq dk

(2π)2
eikx−iqxaka∗

q

(k + i)2(q − i)2

×
{

2
cosh2 x

[
(q − i tanh x)2 + (k + i tanh x)2

]
+4 cosh−4 x + 4(q − i tanh x)2(k + i tanh x)2

}
(B1)

+
∫

dq dk

(2π)2
eikx+iqxakaq

(k + i)2(q + i)2

{
1

cosh4 x

+
[
(k + i)2 − 2ik

e−x

cosh x
+

1
cosh2 x

]

×
[
(q + i)2 − 2iq

e−x

cosh x
+

1
cosh2 x

]

+
4

cosh2 x

[
(q + i)2 − 2iq

e−x

cosh x
+

1
cosh2 x

]}

+
∫

dq dk

(2π)2
e−ikx−iqxa∗

ka∗
q

(k − i)2(q − i)2

{
1

cosh4 x

+
[
(k − i)2 + 2ik

e−x

cosh x
+

1
cosh2 x

]

×
[
(q − i)2 + 2iq

e−x

cosh x
+

1
cosh2 x

]

+
4

cosh2 x

[
(q − i)2 + 2iq

e−x

cosh x
+

1
cosh2 x

]}
.

Making substitution of Eq. (B1) into Eq. (3.11) and
taking integrals over x, one finds

Fvv =
∫

dk dq

24π

iaka∗
q(k

2 − q2)2(1 + k2 + kq + q2)
(k + i)2(q − i)2 sinh[π(k − q)/2]

(B2)

+
∫

dk dq

2π

iakaq(k+q)2(1+k2+q2−kq)(2+k2+q2)
24(k + i)2(q + i)2 sinh[π(k + q)/2]

−
∫

dk dq

2π

ia∗
ka∗

q(k+q)2(1+k2+q2−kq)(2+k2+q2)
24(k − i)2(q − i)2 sinh[π(k + q)/2]

.

From Eq. (1.13,3.6,3.7) and Eq. (B2), one derives Fvv =
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F +Φ+Φ∗, where the quantities F and Φ are defined as

F =
πi

3 · 25

∫
dk dq (k2 − q2)2(1 + k2 + q2 + kq)

cosh[πk/2] cosh[πq/2] sinh[π(k − q)/2]

×
∫ z

0

dz1dz2 ξ(z1)ξ(z2)ei(k2+1)(z−z1)−i(q2+1)(z−z2)

×
[(

k − i

k + i

)2 (
q + i

q − i

)2

ei(q−k)y (B3)

+
(

k − i

k + i

)2

e−iky−iα +
(

q + i

q − i

)2

eiqy+iα

]
,

Φ = − πi

3 · 26

∫
dkdq(k+q)2(1+k2+q2− kq)(2+k2+q2)
cosh(πk/2) cosh(πq/2) sinh[π(k + q)/2]

×
∫ z

0

dz1dz2 ξ(z1)ξ(z2)ei(k2+1)(z−z1)+i(q2+1)(z−z2)

×
[(

k − i

k + i

)2 (
q − i

q + i

)2

e−i(q+k)y−2iα (B4)

+
(

k − i

k + i

)2

e−iky−iα +
(

q − i

q + i

)2

e−iqy−iα

]
.

The second term in the force (3.12) can be analogously
presented as

Fξv =
π

60
ξ(z)

∫ z

0

dz′ξ(z′)
∫

dk k(k2 + 1)(16 + 9k2)
cosh2(πk/2)

× Re

[
ei(k2+1)(z−z′)

(
k − i

k + i

)2

e−iα−iky

]
. (B5)

The third term, originating from the phase α1 depen-
dence on z (in the leading first order over ξ, see Eq.
(3.8)), in the force (3.13) is given by

Fξα =
ξ(z)
2π

∫
dkRe

[∫
dx tanhx

cosh x
ak(z)(f (1)

k +f
(2)
k )

]

=
ξ(z)
2π

∫
dkRe

[
ak(z)

∫
dxeikx tanhx

cosh x

×
(

1 − 2ike−x

(k + i)2 cosh x
+

2
(k + i)2 cosh2 x

)]

=
ξ(z)
6

∫
dk k

cosh(πk/2)
Re

iak(z)(k − i)
(k + i)

= − π

12
ξ(z)

∫ z

0

dz′ξ(z′)
∫

dk k(k2 + 1)
cosh2(πk/2)

× Re

[
ei(k2+1)(z−z′)

(
k − i

k + i

)2

e−iα−iky

]
. (B6)

The expressions (B3,B4,B5,B6) will be used below to ex-
amine statistics of the overall force Fvv+Fξv+Fξα acting
on the soliton.

a. Alternative Representation

The overall force can also be presented as

Fvv+Fξv+Fξα =∂z

(
P̃ + P + P ∗

)
+ Λ , (B7)

P̃ =
π

3 · 25

∫
dk dq (k2 − q2)(1 + k2 + q2 + kq)

cosh[πk/2] cosh[πq/2] sinh[π(k − q)/2]

×
∫ z

0

dz1dz2 ξ(z1)ξ(z2)ei(k2+1)(z−z1)−i(q2+1)(z−z2)

×
[(

k − i

k + i

)2 (
q + i

q − i

)2

ei(q−k)y (B8)

+
(

k − i

k + i

)2

e−iky−iα +
(

q + i

q − i

)2

eiqy+iα

]
,

P = − π

3 · 26

∫
dkdq(k+q)2(1+k2+q2− kq)

cosh(πk/2) cosh(πq/2) sinh[π(k + q)/2]

×
∫ z

0

dz1dz2 ξ(z1)ξ(z2)ei(k2+1)(z−z1)+i(q2+1)(z−z2)

×
[(

k − i

k + i

)2 (
q − i

q + i

)2

e−i(q+k)y−2iα (B9)

+
(

k − i

k + i

)2

e−iky−iα +
(

q − i

q + i

)2

e−iqy−iα

]
,

Λ =
πξ(z)

8
Re

∫
dk k(1 + k2)2

cosh2(πk/2)
(B10)

×
∫ z

0

dz′ ξ(z′)ei(k2+1)(z−z′)

[(
k − i

k + i

)2

e−iα−iky

]
,

where the exponentially small in y terms are omitted.
(The terms are produced by integrals, say, over k, with
the oscillating, ∼ exp(−iky) and z-independent inte-
grands. Then, the integration contour can be shifted to
surround a pole, nearest to the real axis, and a residue at
the pole gives the main contribution, exponentially small
over y.)

b. Second soliton

Straightforward calculations show that for the force
acting on the second soliton one can, actually, use Eqs.
(B3,B4,B5,B6,B10) with the only correction there: ex-
pressions under square brackets on the right-hand side of
each of those formulas should be replaced by their com-
plex conjugates.

1. Average Impulse

Here we calculate the average of the overall force
Fvv + Fξv, given by (B7), over statistics of ξ. Notice,
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that the average of Λ, calculated in accordance with Eqs.
(1.2,B10), is exponentially small in y = y2 − y1 and will
be neglected below.

It follows from Eq. (B8) that

〈
P̃
〉

=
πiD

96

∫
dk dq

{
1 − exp[i(k2 − q2)z]

}
× 1 + k2 + q2 + kq

cosh(πk/2) cosh(πq/2) sinh[π(k − q)/2]

×
[(

k − i

k + i

)2 (
q + i

q − i

)2

ei(q−k)y (B11)

+
(

k − i

k + i

)2

e−iky−iα +
(

q + i

q − i

)2

eiqy+iα

]
.

Let us change the integration variables from k, q to
k± = k ± q. The first contribution to the average im-
pulse originates from the first term inside the brackets in
Eq. (B11)

〈
P̃
〉

1
=

πiD

192

∫
dk+dk−

sinh(πk−/2)
{
1 − eik+k−z

}
e−ik−y

× 1 + k2 + q2 + kq

cosh(πk/2) cosh(πq/2)
(k − i)2

(k + i)2
(q + i)2

(q − i)2
.

The integral is formed at the smallest k−. One gets

〈
P̃
〉

1
=

πD

48

∫ ∞

0

dk+
1 + 3k2

+/4
cosh2(πk+/4)

=
D

6
, (B12)

where terms exponentially small in y are omitted. The
second contribution to the average impulse coming from
the last two terms inside the square brackets in Eq. (B11)
is formed at small k± and can be written as

〈
P̃
〉

2
=

iD

96

∫
dk− dk+

k−
{1 − exp[ik+k−z]}

×
[
e−i(k+y/2+k−y/2+α) + ei(k+y/2−k−y/2+α)

]
=

πD

12y
sin(α + y2/4z).

One finds, that at large y the contribution given by Eq.
(B12) is dominant.

Let us now consider the average

〈P 〉 = − πiD

3 · 26

∫
dkdq(k+q)2(1+k2+q2− kq)

cosh(πk/2) cosh(πq/2)

× [1 − ei(k2+1)z+i(q2+1)z]
(2 + k2 + q2) sinh[π(k + q)/2]

[(
k − i

k + i

)2

e−iky−iα

+
(

q−i

q+i

)2

e−iqy−iα+
(

k−i

k+i

)2(
q−i

q+i

)2

e−i(q+k)y−2iα

]
.

The term, which does not contain a z-dependence, pro-
duce an exponentially subleading in y contribution to
〈P 〉. The z-dependent contribution is formed q, k ∼
1/
√

z, and it is, therefore, ∼ y/z2. (Notice also, that

the term oscillates rapidly with z also.) Therefore, the
averages 〈P 〉, 〈P ∗〉 are negligible at large z in comparison
with the contribution given by Eq. (B12).

To conclude, at large z the average force is zero and
the main contribution to the impulse of the force F is
D/6.

2. Fluctuations of the Force

One considers here the irreducible part of the pair cor-
relation of Fvv, which can be written as

〈〈Fvv(z1)Fvv(z2)〉〉 = 〈F1F2〉 − 〈F1〉〈F2〉 (B13)
= 〈F1F2〉 + 〈Φ1Φ∗

2〉 + 〈Φ∗
1Φ2〉 ,

where 〈Fvv〉 is neglected and only non-oscillating terms
are kept.

The first contribution to Eq. (B13) is

〈F1F2〉 − 〈F1〉〈F2〉 =
π2D2

9 · 210
(B14)

×
∫

dk1dk2dq1dq2 (k2
1 − q2

1)2(k2
2 − q2

2)2

cosh[πk1/2] cosh[πq1/2] cosh[πk2/2] cosh[πq2/2]

×
(
1+k2

1+q2
1+k1q1

) (
1+k2

2+q2
2+k2q2

)
sinh [π(k1 − q1)/2] sinh [π(k2 − q2)/2]

ei(k2
1−q2

1)ζ

×
[(

k1 − i

k1 + i

)2

e−iq1y−iα +
(

q1 + i

q1 − i

)2

eik1y+iα

+
(

k1 − i

k1 + i

)2 (
q1 + i

q1 − i

)2][(
k2 − i

k2 + i

)2 (
q2 + i

q2 − i

)2

+
(

k2 − i

k2 + i

)2

e−iq2y−iα +
(

q2 + i

q2 − i

)2

eik2y+iα

]

× 1
k+k−q+q−

[
eik+k−z − 1

] [
eiq+q−z − 1

]
e−ik−y−iq−y .

where k± = k1 ± q2, q± = k2 ± q1, and z = min{z1, z2},
ζ = |z1−z2|. The simultaneous correlation function, cor-
respondent to ζ = 0, is the first object to study here. One
finds that the dominant contribution, proportional to log-
arithm of y and z, originates from the α-independent
terms in the integrand of (B14). (The α-dependent con-
tribution is ∼ 1/y.) There are such contributions of two
kinds. The first one comes from the product of two differ-
ent α-independent terms, each from expression bounded
by the square brackets in the integrand of Eq. (B14).
The terms of the second kind are coming from products
of two terms cancelling their α-dependence in the result.
In the contribution of the first kind, the integrals over k−
and q− are formed at both k−, q− ∼ 1/y. Thus, replacing
k−, q− in all non-oscillatory terms by zero, one derives

〈〈F 2〉〉1 =
π4D2

9 · 218

∫ ∞

y/z

dk+dq+ (k2
+ − q2

+)4

cosh2[πk+/4] cosh2[πq+/4]

× (1 + k2
+/4 + q2

+/4 + k+q+/4)2

k+q+ sinh2[π(k+ − q+)/4]
. (B15)
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Some products produce analogous integrals (originating
from small k− and q−) containing, however, the factors
oscillating with k+ and/or q+ in the integrands. The
contributions are ∝ y−1 and can be drooped. In the re-
maining two (identical) contributions of the second type
the k− and q− integration are not equivalent. One of the
wave-vectors, say k− is still O(1/y). Integrating over k−
one gets

〈〈F 2〉〉2 =
π4D2

9 · 221

∫ ∞

y/z

dq+

q+ cosh2(πq+/4)
(B16)

×
∫

dk+dk−
2πik+k−

[exp(ik+k−z) − 1]

× [(k+ + k−)2 − q2
+]2[(k+ − k−)2 − q2

+]2

cosh[π(k+ + k−)/4] cosh[π(k+ − k−)/4]

× [4 + (k+ + k−)2 + q2
+ + q+(k+ + k−)][k− → −k−]

sinh[π(k+ + k− − q+)/4] sinh[π(k+ − k− − q+)/4]
.

The major contribution into the integral originates from
q+ ∼ 1 � k±. Replacing the integrand in Eq. (B16) by
its asymptotic value at k± → 0, one finds that integration
over k± gives a ∼ ln[z] contribution. Finally, collecting
the two major contribution into the simultaneous corre-
lation function one finds

〈〈F 2〉〉 =
π4D2

9 · 215
[ln(z/y) + ln z]

∫ ∞

0

dq q7(1 + q2/4)2

sinh2(πq/2)
= 0.0068 · D2 · ln[z2/y] . (B17)

The result (B17) is asymptotic, valid at z � y only. Let
us now account for ζ = 0 in Eq. (B14), i.e. for z1 =
z2. It is obvious from the analysis of the simultaneous
correlation function that Eq. (B17) is formed at such
values of the four wave vectors k±, q±, that only one
of the wave vectors is O(1), while the other three much
smaller. The modification of Eq. (B17) is

〈〈F (z1)F (z2)〉〉 =
π4D2

9 · 215
ln(z2/y)

×
∫ ∞

0

dq q7(1 + q2/4)2

sinh2(πq/2)
cos

[
q2ζ

]
, (B18)

i.e. at ζ � 1, the correlations decay algebraically in ζ,
〈〈F (z1)F (z2)〉〉 ∼ D2 ln[z2/y]/ζ3. It also follows from Eq.
(B18) that

∫
dζ 〈〈F (z + ζ)F (z)〉〉 = 0.

Let us calculate the Φ and Φ∗ in Eq. (B13). One finds

〈Φ(z + ζ/2)Φ∗(z − ζ/2)〉 = − π2D2

9 · 211
(B19)

×
∫

dk1dq1(k1+q1)2(1+k2
1+q2

1− k1q1)(2+k2
1+q2

1)
cosh(πk1/2) cosh(πq1/2) sinh[π(k1 + q1)/2]

×
∫

dk2dq2(k2+q2)2(1+k2
2+q2

2− k2q2)(2+k2
2+q2

2)
cosh(πk2/2) cosh(πq2/2) sinh[π(k2 + q2)/2]

×ei(k2
1/2+k2

2/2+1)ζ

k2
1 − k2

2

[
ei(k2

1−k2
2)|ζ|/2 − ei(k2

1−k2
2)z

]

×ei(q2
1/2+q2

2/2+1)ζ

q2
1 − q2

2

[
ei(q2

1−q2
2)|ζ|/2 − ei(q2

1−q2
2)z

]

×
[(

k1 − i

k1 + i

)2 (
q1 − i

q1 + i

)2

e−i(q1+k1)y−2iα

+
(

k1 − i

k1 + i

)2

e−ik1y−iα +
(

q1 − i

q1 + i

)2

e−iq1y−iα

]

×
[(

k2 + i

k2 − i

)2 (
q2 + i

q2 − i

)2

ei(q2+k2)y+2iα

+
(

k2 + i

k2 − i

)2

eik2y+iα +
(

q2 + i

q2 − i

)2

eiq2y+iα

]
.

The first logarithmic contribution to the average (B19)
originates from the terms, containing 2α. The integrals
are formed at small values of k1 − k2 and q1 − q2. The
result of integration is

〈Φ(z + ζ/2)Φ∗(z − ζ/2)〉1 =
π4D2

9 · 215

∫ ∞

y/z

dk+dq+

k+q+

(1+k2
+/4+q2

+/4− k+q+/4)2(2+k2
+/4+q2

+/4)2

cosh2(πk+/4) cosh2(πq+/4) sinh2[π(k+ + q+)/4]
×(k++q+)4 exp

[
i(k2

+/4 + q2
+/4 + 2)ζ

]
, (B20)

where q+ = q1 + q2 and k+ = k1 + k2. If ζ = 0 then the
integral (B20) is reduced to

〈Φ(z)Φ∗(z)〉1 =
π4D2

9 · 212
ln(z/y) (B21)

×
∫ ∞

0

dk+
k3
+(1+k2

+/4)2(2+k2
+/4)2

sinh2[πk+/2]
≈ 0.017D2 ln(z/y) .

The integral of the expression (B20) over ζ is evidently
zero.

We now turn to calculation of the second logarithmic
correction originating from the terms which contain α.
The contribution is

〈Φ(z + ζ/2)Φ∗(z − ζ/2)〉2 =
π4D2

9 · 212
(B22)

×
∫

dq+ q3
+(1 + q+/4)2(2 + q2

+/4)2

sinh2[πq+/2]
ei(q2

+/4+2)ζ

×
∫

dk+dk−
2πik+k−

[
eik+k−z − 1

]
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where k± � q+, as in Eq. (B16). The integral over k+

and k− in Eq. (B22) produces ln z. Therefore, the term
〈Φ(z)Φ∗(z)〉2 is given by expression similar to Eq. (B21),
with the substitution of ln(z/y) by ln z. Finally,

〈Φ(z)Φ∗(z)〉 ≈ 0.017D2 ln(z2/y) , (B23)∫
dz 〈Φ(z + ζ/2)Φ∗(z − ζ/2)〉 = 0 . (B24)

a. Dominant (Λ-) term

The pair correlation function of the contribution (B10)
is

〈Λ(z)Λ(z′)〉 = D2Gδ(z − z′), (B25)

G =
π2

27

∫
dkdq

ei(k2−q2)z − 1
i(k2 − q2)

× kq(1 + k2)2(1 + q2)2

cosh2(πk/2) cosh2(πq/2)

×
(

k − i

k + i

)2 (
q + i

q − i

)2

ei(q−k)y . (B26)

The major, y and z-independent contribution into G is
coming from small values of k − q. Taking the integral
over this variable, one derives

G=
π3

27

∞∫
0

dkk(1 + k2)4

cosh4(πk/2)
≈0.14. (B27)

Correlation function which defines change in the rela-
tive position of the two solitons is defined by Λ̃ = Λ1−Λ2,
where the indexes (1) and (2) stand for the first and sec-
ond solitons, i.e. Λ1 is given by Eq. (B10), while Λ2 is
given by Eq. (B10) with the expression on the right-hand
side of it replaced by its complex conjugate. One gets

〈Λ̃(z)Λ̃(z′)〉 = 2[1 + cos(2α)]D2Gδ(z − z′). (B28)

3. Fluctuations of the Impulse

Similarly to the calculations of the previous Subsection
one can analyse fluctuations of the impulse P = P̃ +P +
P ∗. We obtain instead of Eq. (B17)

〈〈P̃ 2〉〉 =
π4D2

9 · 211
[ln(z/y) + ln z]

∫ ∞

0

dq q3(1 + q2/4)2

sinh2(πq/2)
≈ 0.0036D2 ln(z2/y) . (B29)

The analog of Eq. (B21) is

〈P (z)P ∗(z)〉 =
π4D2

9 · 212
[ln(z/y) + ln z] (B30)

×
∫ ∞

0

dk+
k3
+(1+k2

+/4)2

sinh2[πk+/2]
≈ 0.0018D2 ln(z2/y) .

Finally, one gets the following answer for the pair simul-
taneous correlation function of the impulse〈P2(z)

〉 ≈ 0.0073D2 ln(z2/y) . (B31)

The major contribution into the overall impulse of the
force is coming from the Λ-term〈[∫ z

0

dz′ Λ(z′)
]2

〉
≈ 0.265D2z . (B32)

The cross correlations are given by

〈P(z + ζ)Λ(z)〉 =
π2D2

9 · 27
Re

∫
dk dq dp ei(k2−q2)ζ (B33)

× k(k − q)(1 + k2 + q2 + kq)
cosh[πk/2] cosh[πq/2] sinh[π(k − q)/2]

(
q + i

q − i

)2

×p(1 + p2)(5 + 3p2)
cosh2(πp/2)

(
p − i

p + i

)2
ei(p2−q2)z − 1

i(p2 − q2)
ei(q−p)y ,

which is non-zero at ζ > 0 only. The integral (B33) is
formed at the small values of p− q. Integrating one finds

〈P(z + ζ)Λ(z)〉 = −π3D2

9 · 27
Re

∫
dk

∫ ∞

0

dq ei(k2−q2)ζ

×k(k − q)(1 + k2 + q2 + kq)(1 + q2)(5 + 3q2)
cosh[πk/2] cosh3[πq/2] sinh[π(k − q)/2]

, (B34)

which turns to the following expression at ζ → 0

〈P(z + 0)Λ(z)〉 = − π3D2

9 · 5 · 27

∫ ∞

0

dq

×q(1 + q2)2(5 + 3q2)(7 + 3q2)
cosh4[πq/2]

≈ −0.068D2 . (B35)

We also find from Eq. (B34)

〈
P(z)

∫ z

0

dz′Λ(z′)
〉

= −π3D2

9 · 27
Re

∫
dk k

∫ ∞

0

dq

ei(k2−q2)z− 1
i(k2 − q2)

(k−q)(1+k2+q2+kq)(1+q2)(5+3q2)
cosh[πk/2] cosh3[πq/2] sinh[π(k − q)/2]

= −π3D2

9 · 27

{∫ ∞

0

dq
(1 + 3q2)(1 + q2)(5 + 3q2)

cosh4(πq/2)
(B36)

−π

∫ ∞

0

dq
q(1 + q2)2(5 + 3q2)

cosh4(πq/2) sinh(πq)

}
≈ −0.053D2 .

Therefore this cross correlation is negligible.

4. Additional Impulse

An additional impulse, P1, the last one left to be cal-
culated, is due to the direct noise contribution P1 in Eq.
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(3.14). Expressing v, v∗ in Eq. (3.15) via ξ and perform-
ing averaging over the statistics of ξ in accordance with
Eq. (1.2) one finds

〈P1(z)〉 = −D

4
Im

∫
dxx

cosh4 x

dk dq eikx−iqx

cosh(πk/2) cosh(πq/2)
exp[i(k2 − q2)z] − 1

i(k2 − q2)

{
(q − i)2+

2iqe−x

cosh x
+

1
cosh2 x

}
[
1 +

(
k − i

k + i

)2

e−iky−iα

][
1 +

(
q + i

q − i

)2

eiqy+iα

]
.

Integrating the resulting expression over x, one derives

〈P1(z)〉 =
πD

192

∫
dk dq (k − q)2(k + q)

cosh(πk/2) cosh(πq/2)
1

i(k2 − q2)

×
[
1 +

(
k − i

k + i

)2

e−iky−iα

][
1 +

(
q + i

q − i

)2

eiqy+iα

]

×exp[i(k2 − q2)z] − 1
sinh2[π(k − q)/2]

{
−4(k − q) sinh

[
π(k − q)

2

]

+π(4 + k2 − 2kq + q2) cosh
[
π(k − q)

2

]}
. (B37)

The main contribution into the integral comes from k
close to q. Simplifying the expression, keeping only main
terms in k−q, one can then take the integrals over k and
q, obtaining 〈P1(z)〉 = D/3. The contribution should
be taken into account on equal footing with Eq. (B12).
That gives a systematic drift 2Dz/3 for y1.
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